

Shining X-rays on Catalytic Reactors: Importance of Time and Spatially Resolved Studies

Jan-Dierk Grunwaldt

Institute for Chemical Technology and Polymer Chemistry, Campus South

KIT – University of the State of Baden-Wuerttemberg an

www.kit.edu

Overview

- Introduction: Setting the scene
- Time resolved studies
- Scanning and full-field X-ray microscopy in the µm and mm regime
- Spatiotemporal studies
- Summary and outlook

2 28.06.2010

Shining X-rays on catalytic reactors | Grunwaldt

Imaging working catalysts

- Improvement of catalysts triggered by the microscale
- Equally important is the "macroscale"
 - Real catalysts are in large scale fixed bed reactors
 - Pressure drop needs to be minimized
 - Strength of catalyst pellets
 - Optimized diffusion parameters

A.T. Bell, Science 299, 1688 (2003)

(Haldor Topsøe)

28.06.2010

Shining X-rays on catalytic reactors | Grunwaldt

Institute for Chemical Technology and Polymer Chemistry

Imaging working catalysts

- Improvement of catalysts triggered by the microscale
- Equally important is the "macroscale"
 - Real catalysts are in large scale fixed bed reactors
 - Pressure drop needs to be minimized
 - Strength of catalyst pellets
 - Optimized diffusion parameters
 - Temperature and concentration gradients in catalytic reactors

Partial oxidation of methane over 2.5%Rh/Al₂O₃

Partial oxidation of methane over Pd

28.06.2010 Shining X-rays on catalytic reactors | Grunwaldt

Imaging working catalysts - time resolution Long-term dynamic effects Sintering and ageing Restructuring Formation of BaCeO₃, Pt_xBa_{1-x}CeO₃ in NSR-catalysts — Pt/Ba/CeO, raw material calcined at 800°C for 1h ... calcined at 1000°C for 8h after calcination to 1200°C BaCeO. Progress of formation / % FT (k3-weighted) 0.015 BaAI,O 0.010 0.005 M. Casapu, J.-D. Grunwaldt, et al., Top. Catal. 42, 3 (2007), J. Catal, 251, 48 (2007) 28.06.2010 Shining X-rays on catalytic reactors | Grunwaldt Institute for Chemical Technology and Polymer Chemistry

Imaging working catalysts - time resolution

- Long-term dynamic effects
 - Sintering and ageing, restructuring
- Rapid structural changes
 - Temperature programmed reaction
 - Ignition, extinction
 - Oscillating reactions
 - Activation of catalysts (e.g. reduction)

Total oxidation of %/methane over 10%Pd/ZrO₂

28.06.2010

Grunwaldt, et al. Chem. Commun., 4635 (2007).
Shining X-rays on catalytic reactors | Grunwaldt

Grunwaldt and Baiker, Catal. Lett. 99, 5 (2005).

Institute for Chemical Technology and Polymer Chemistry

Shining X-rays on catalysts – best compromise?

$$\tau_{film} \cong \frac{\rho_{CuO} \cdot \frac{d}{2}}{k_{m} \cdot c_{H2}} \longrightarrow 6.5 \text{ s}$$

$$\tau_{film} \cong \frac{\rho_{CuO} \cdot R_p}{3k_m \cdot c_{H2}} \longrightarrow 1.7 \text{ ms}$$

D_e=10⁻⁶ to 10⁻⁸ m²/s

$$\tau_{pore} \cong \frac{\rho_{CuO} \cdot (\frac{\alpha}{2})^2}{2D_e \cdot c_{H2}} \longrightarrow \frac{1}{2D_e \cdot c_{H2}}$$

$$\tau_{pore} \cong \frac{\rho_{\textit{CuO}} \cdot R_p^2}{6D_e \cdot c_{H2}} \longrightarrow \begin{array}{c} \textbf{0.02 to 2 s} \\ \text{Grunwaldt et al., PCCP 6, 3037 (2004).} \end{array}$$

12 28.06.2010

Shining X-rays on catalytic reactors | Grunwaldt

Catalytic partial oxidation of methane

$CH_4 + \frac{1}{2}O_2 \rightarrow CO + 2H_2$

Active Catalysts: Supported noble metals, Ni-catalysts [1]

- Alternative route to steam/ autothermal reforming [2]
- Synthesis gas for production of liquid fuels
- Useful in stationary SOFCs

[1] A.P.E. York et al., Topics Catal. 22, 345 (2003)
Hickmann and Schmidt, Science 259, 343 (1993)
[2] J.R. Rostrup-Nielsen, J. Sehested, J.K. Norskov, Adv. Catal. 47, 65 (2002)

Flaring of natural gas

From: L. Plass, S. Reimelt, CIT 79, p. 561 (2007)

1 101111 21 1 1000; C. 1101111011; C. 1 1 0; p. 00 1 (2001)

14 28.06.2010

Shining X-rays on catalytic reactors | Grunwaldt

Institute for Chemical Technology and Polymer Chemistry

Catalytic partial oxidation of methane: Ignition of the reaction

$CH_4 + \frac{1}{2}O_2 \rightarrow CO + 2H_2$

2.5%Rh-2.5%Pt/Al₂O₃, prepared by flame synthesis 6% CH₄, 3% O₂ in He, ramp rate: 5 K/min

Grunwaldt and Baiker, Catal. Lett. 99, 5 (2005).

15 28.06.2010

Shining X-rays on catalytic reactors | Grunwaldt

Going to the third dimension: X-ray tomography on shaped catalysts

3D-reconstruction of 0.5%Pd/Al₂O₃, shell-impregnated catalyst pellet of cylindrical shape; sample was stuck from one side on the sample holder, field of view: 3.54 mm x 2.36 mm; total reconstructed volume of 3.54 x 3.54 x 2.36 mm³.

44

28.06.2010

Shining X-rays on catalytic reactors | Grunwaldt

Institute for Chemical Technology and Polymer Chemistry

Going to the third dimension: X-ray tomography on shaped catalysts

3D-reconstruction of Cu/Al₂O₃, (a) 1 min and (b) 10 min with CuCl₂-solution impregnated catalyst pellet; field of view: 3.54 mm x 2.36 mm.

J.-D. Grunwaldt, et al., Catal. Today 145, 267 (2009).

45

28.06.2010

Shining X-rays on catalytic reactors | Grunwaldt

Summary and conclusions

- Dynamic & in situ studies are important for structural studies both on a micro- and nanoscale
- Hard X-ray based techniques advantageous for gas phase, high temperature, liquid phase and elevated pressure
- We need in future
 - Full EXAFS spectra
 - X-ray absorption tomography under in situ conditions
 - Better spatial resolution
 - Combination of full-field and scanning X-ray microscopy
 - Combination of electron and X-ray microscopy
 - Time-resolution with spatial resolution

28.06.2010

Shining X-rays on catalytic reactors | Grunwaldt

Institute for Chemical Technology and Polymer Chemistry

Acknowledgements

- KIT: The new group especially Matthias Bauer and Alexey Boubnov
- DTU-KT: Matthias Beier, Martin Høj, David Mogensen, Anna Filipu, Bjørn Maribo, Jon Christensen
- •CEN: Rafal Dunin-Borkowski, Thomas Hansen, Jacob Wagner

- Department of Chemistry and Applied Biosciences: Alfons Baiker, Matteo Caravati, Bertram Kimmerle, Stefan Hannemann, and many more
- Mechanical and electronic workshop

• Universität Wuppertal: Prof. R. Frahm, Jan Stötzel, Dirk Lützenkirchen-Hecht

• RWTH Aachen/TU Dresden: Prof. Dr. C.G. Schroer, Prof. B. Lengeler

- PERGAM-SUISSE AG: Infrared-Thermography
- Financial Support: EU-projects, especially R113-CT-2004-506008, DANSCATT, Technical University of Denmark, Danish Research Council, Haldor Topsøe, ETH Zürich, Karl-Winnacker-Fond

28.06.2010

Shining X-rays on catalytic reactors | Grunwaldt

